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SUM RULES AND DENSITY RESPONSE 

CHARGED BOSE FLUID 
OF A TWO-DIMENSIONAL 
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a School of Basic and Applied Sciences, Thapar Institute of Engineering 
and Technology, Patiala-147 001, India; 

Department of Physics, Punjub University, Chundigarh-160 014, India 

(Received 18 August 1997) 

The density response of a two-dimensional charged Bose fluid at absolute zero 
temperature is studied beyond the random-phase approximation by including the many- 
body correlation effects. The correlations are accounted for through a static local-field 
correction obtained by satisfying in an approximate way the third frequency-moment 
sum rule of the density response function. The static structure factor, the pair-correlation 
function, the elementary excitation spectrum, and the ground-state energy are calculated 
over a wide range of boson number density. Wherever available, the results are 
compared with the recent diffusion Monte Carlo data and the calculation based upon the 
theory of Singwi et al. We also present a comparison between the results of electron and 
charged Bose fluids for pair-correlation function and elementary excitation spectrum. 

Keywords: Structure; elementary excitations; Bose fluids 

1. INTRODUCTION 

The charged Bose fluid model, comprising a system of charged point- 
like spinless bosons embedded in a rigid uniform neutralizing 
background, has drawn considerable interest in the recent years. The 
model represents the Bose counterpart of the electron jellium and was 
proposed by Schafroth [ I ]  in connection with the superconducting 
phenomenon even prior to the BCS theory. It may also have some 
astrophysical relevance in relation to the cores of white dwarf stars 
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90 R. K. MOUDGIL el al. 

consisting of pressure-ionized helium [2]. The charged Bose fluid, 
however, unlike its electron analog, has not been studied much mainly 
because it has not been so far realized in the laboratory. Nevertheless, 
there exists interest in this system, since it offers a ground for studying 
together the effects related to the many-body correlations and the 
Bose-Einstein statistics. As a pioneering work for the charged bosons 
at absolute zero, Foldy [3] calculated the ground-state energy and the 
elementary excitation spectrum in the high density limit by following a 
method due to  Bogoliubov. Since then, many attempts [4] have been 
made theoretically to extend this study over a wide range of boson 
number densities. In addition to the theory, the computer simulation 
ex-periments [5] have provided useful information on the boson 
ground state. 

The problem of charged bosons has also been considered in the two- 
dimensions (2D), where the dynamics of particles is restricted to the 
plane. The 2D charged Bose system had been of course first studied 
about two decades ago [6], it has recently drawn renewed interest due 
to its recognition as a possible model for a high-T,. superconductor [7]. 
The possibility has grown mainly due to the failure of the BSC theory 
to account for the unusual behavior exhibited by the high-T, 
superconductors. Moreover, there are some experimentally observed 
facts which are theoretically well explained in terms of the charged 
Bose fluid model. In this respect, the study of a two-dimensional 
charged Bose fluid (2DCBF) has become an important subject. 
However, it is not our aim in the present work to deal with the 
superconducting behavior of the CBF, rather we intend to investigate 
the effect of many-body correlations on its ground state. 

In a strictly-2D system, the particles interact through In ( r )  
potential. However, in a real physical situation, if it exists, the particle 
wave function will not be confined to the plane. To be consistent with 
the 3D nature of wave function, most of the earlier studies assume that 
the particles interact with the 3D Coulomb potential, i.e., I/r, where r 
is the 2D separation. We shall confine our discussion to the latter class 
only. Hines and Frankel [6] first studied such 2DCBF to calculate its 
dielectric response and the elementary excitation spectrum within the 
random-phase approximation (RPA). However, the applicability of 
the RPA appears to be restrictive in the high density limit as it neglects 
completely the short-range correlations between charged bosons. As 
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TWO-DIMENSIONAL CHARGED BOSE FLUID 91 

an important manifestation of the neglect of correlation effects, the 
pair-correlation function g(r)  in RPA has been found to become 
negative at small separation. The role of correlations beyond the RPA 
have recently been explored by us [8] within the self-consistent field 
approximation of Singwi, Tosi, Land, and Sjolander (STLS) [9] and by 
Gold [lo] within the so-called sum rule version of STLS. The STLS 
theory describes correlations as giving rise to a region of depleted 
charge density around each particle in the fluid and quantitatively, this 
effect is accomplished through a static local-field correction. Results of 
g(r)  thus obtained satisfy the positive definiteness condition at least in 
the intermediate fluid density range. I t  may be mentioned here that the 
STLS theory had originally been proposed Tor the degenerate electron 
gas and there also exist some alternative schemes [ l l ]  to correlations 
differing in the method of calculation for the local-field correction. It 
will be useful to study correlation effects in the 2DCBF in these 
schemes and to examine the results in comparison with the other 
theories and the recent diffusion Monte Carlo (DMC) calculation [12]. 
This forms one of the motivation for the present work. I t  may be 
added here that at the time we performed the STLS treatment of 
2DCBF, the DMC results were not available for comparison. We also 
intend to draw a comparison between the screening behavior of 
charged Bose fluid and its Fermi counterpart, i.e., a fluid of electrons. 

In this paper, we use the Pathak-Vashishta (PV) theory [ I  I ]  for 
studying the effect of many-body correlations beyond RPA. The PV 
theory has recently been used by Hong and Choi [13] for studying the 
ground state of 3DCBF. In the PV approach, a mean-field expression 
is assumed for the density response function x(q, w)  and the local-field 
correction is determined by satisfying the third-frequency-moment 
sum rule of ~ ( y ,  w). In Sec. I f ,  we present in brief the PV theory. As in 
the STLS theory, the local-field correction has to be obtained 
numerically in a self-consistent way. From the calculation of x(q, w), 
we can deduce the various static and dynamic properties of the Bose 
fluid. The physical properties of our interest are the static structure 
factor, the pair-correlation function, the elementary excitation 
spectrum, and the ground-state energy. In Sec. I l l ,  we present 
numerical results for these over the density range 15 rJ 5 10; r, is 
the dimensionless density parameter defined by r T  = l / [ a o f i ]  where 
n is the boson number density and a. is the Bohr atomic radius. 
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92 R. K. MOUDGIL et al. 

Results are discussed in comparison with the STLS theory and the 
DMC calculation. In Sec. IV, we present a comparison between the 
results of charged Bose and electron fluids in terms of static correlation 
functions and the elementary excitation spectrum. In Sec. V, we make 
the concluding remarks. 

2. THEORETICAL PROCEDURE 

Consider a fluid of N point-like spinless bosons each of charge e 
confined to move within the plane in the presence of a rigid uniform 
neutralizing background. The system is described by the Hamiltonian 

where V(q)=2?re2/q, is the 2D Fourier transform of the Coulomb 
potential V(r)=e2/r  and pq = Cie-''7+"', is the density fluctuation ope- 
rator. We consider the response of the fluid to an external potential 
Vext(q,  w) that couples to the density fluctuations in the system. Within 
the linear response theory, the dynamic density response function 
x(q, w)  is given by 

where 

In above Eq., O ( r )  is the unit step function and the angular brackets 
denote the equilibrium ensemble average appropriate to the system 
Hamiltonian. x(q, w) requires for its calculation the knowledge of 
dynamics of p,(r) and this in turn amounts to solve the complicated 
many-body problem. In principle, the time evolution of pq(t)  can be 
expressed as an infinite hierarchy of non-linear coupled differential 
equations, but it is practically impossible to solve this hierarchy. In the 
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TWO-DIMENSIONAL CHARGED BOSE FLUID 93 

effective mean-field approximation, x(4, w)  is written as 

In Eq. (4), ~ ~ ( 4 ,  w) is the density response function of the noninter- 
acting charged Bose gas and at absolute zero, it is given by [3] 

where eq = li2q2/2m, is the free particle energy, n is the areal boson 
number density, 17 is a positive infinitesimal quantity, and $(4) is the 
mean effective potential given by 

G(4) is the local-field correction factor describing the correlations 
between charged bosons. In the PV theory, G(4) is calculated by 
satisfying the low-order frequency moments of X ( q ,  w). In the high- 
frequency limit, x(q, w) can be expanded as 

where w,(y) = ( 2 ~ n e ~ q / r n ) ” ~ ,  is the 2D plasmon frequency and ( K E ) o  
is the kinetic energy per particle of the non-interacting Bose gas. 
Further, since ~ ( 4 ,  t )  is analytic in the upper half of complex-w plane, 
we can write 

The large-frequency expansion of ~ ( 4 ,  w) is obtained from Eq. (8) as 
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94 R. K. MOUDGIL rt al. 

where 

are the odd frequency-moments of the spectral function ~ " ( 4 ,  w). It is 
easy to calculate the low-order moments and are given by 

( W ) = - ,  I nq2 
m 

where ( K E )  is the kinetic energy per particle for the interacting 
charged Bose gas and Z(q) is defined by 

where S(q) is the static structure factor. Comparing Eqs. (7) and (9), 
the first moment is automatically satisfied and the third moment will 
be satisfied if 

For charged bosons, at absolute zero, 
the ground-state energy Egs through the Virial theorem as 

0 and ( K E )  is related to 

where X measures the strength of the boson-boson interaction and 
Ei,,(X) is given by 
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TWO-DIMENSIONAL CHARGED BOSE FLUID 95 

Further, S(q) is related to the imaginary part, ~ ” ( 4 ,  w), of x(q. w) 
through the fluctuation-dissipation theorem as 

By using the Kramers-Kronig relation, the integral in Eq. (18) is 
simplified to give S(q) as 

S(4)  = 1/[1 + 24W/G,I”*> (19) 

which is the famous Feynman-Biji formula. Eqs. (14) - (1 9) impose the 
self-consistent condition on G(q) and it seems numerically difficult to 
obtain the self-consistent solution. The difficulty appears to arise in the 
calculation of ( K E )  from Eqs. (15)-(17) during each step in the 
iterative scheme. However, if we assume that ( K E )  is small enough to 
be negligible, the self-consistency imposed by Eqs. (15)-( 17) is relaxed. 
This assumption is equivalent to state that the Coulomb interactions 
between charged bosons cause negligible change in the ideal Bose- 
Einstein distribution function. It seems from the recent DMC 
calculation of boson distribution function in 3D [I41 that this may 
be a reasonable approximation at low Coulomb coupling strength (rJ. 
The correlational contribution to the kinetic energy was also neglected 
in the PV theory proposed originally for the electron fluid. In the next 
section, we solve Eqs. (14) and (19) self-consistently by taking ( K E )  = O  
and present numerical results for the various quantities of interest. 

3. RESULTS AND DISCUSSION 

In the numerical calculations and the results presented, we use a 
system of units in which tl = I and lengths are expressed in units of q;’ 
with q,  = f i / [ r , ~ g ] .  

3.1. Pair-Correlation Functions 

Expressed in above units, Eqs. (19) and (14) become 
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96 R. K. MOUDGIL et a1 

Eqs. (20) and (21) are solved numerically in a self-consistent way by 
taking the RPA (G(q) = 0) structure factor as the initial guess. A self- 
consistent solution is obtained within a tolerance of about 0.01% in 
about 10-20 iterations depending upon the value of r,. Results for the 
self-consistent structure factor are plotted in Figure 1 for r,= 1, 3, 5, 
10. Also shown in the same figure are the STLS results at r,= 1 and 10. 
The DMC results are not readily available for S(q), rather, its real- 
space transform, i.e., the pair-correlation function q(r), is known at 
various r, values. g(r) can be determined from S(q) by taking its inverse 
Fourier transform as 

1.2 1 ’ I I I I I 
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FIGURE 1 
with the STLS results at r J =  1 and 10. 

The static structure factor S(q) vs q at various values of r,r in comparison 
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TWO-DIMENSIONAL CHARGED BOSE FLUID 91 

In Figure 2, g(r)  is shown for different r, values in comparison with the 
results of the STLS theory and the DMC calculation. It is apparent 
that the behavior of g ( r )  in STLS is overall in better agreement with 
the DMC data and in particular, it fulfills the condition of its positive 
definiteness for rs 5 5. On the other hand, in the PV calculations .g(r) 
becomes negative at small r for rs 2 2 .  However, it may be noticed 
that, except at small r ,  the PV results match reasonably well with the 
DMC data. The reason for the poor quality of g(r)  at small r can be 
understood as follows: In our calculations, the third-frequency- 
moment sum rule is satisfied in an approximate way in the sense that 
we have neglected the q2-term in the expression for G(q) in Eq. (14). 

0 0  
0 1 2 3 4 5  

I 

1'2 7 

1 2  , , , , , , , , 

~ PV - DMC 

-0.4 . I . , . * . # .  
0 1 2 3 4  

r 

1.2, , , . , . I . , . , 

r r 

FIGURE 2 
the PV results; dash-dot lines, the STLS results; solid squares, the DMC results. 

The pair-correlation function g(r) vs r at various values of r,r; solid lines, 
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98 R. K. MOUDGIL et al. 

The assumption appears satisfactory at  low vlaues of r, where one can 
treat the kinetic energy term ( K E )  as negligibally small. However, with 
increasing r,, ( K E )  grows with correlations and as a consequence, the 
q2-term should contribute significantly at large values of q. Thus, the 
approximation used by us seems to be reasonable only in the low-q 
regime or at large r values. We anticipate an improvement in the small- 
r behavior of g(r )  if the numerical calculations are performed by 
exactly satisfying the third-moment sum rule, i.e., by taking into 
account the correlational kinetic energy contribution. 

3.2. Excitation Spectrum and Ground-State Energy 

The energy spectrum of the elementary excitations in the system is 
determined from the poles of density response function, i.e., 

Substituting for xo(q, w) in above Eq., the excitation energy, E(q) = t2 
w(q), turns out to be 

In the long-wavelength limit, E(q) is given approximately 

As y is positive definite, the plasmon dispersion coefficient is negative 
at all values of rs. Results for E(q) (in units of w,,(q)) for different rs are 
plotted in Figure 3 alongwith the STLS curves at rs= 1 and 10. The 
qualitative nature of E(q) in the two theories is the same, but the 
minima in E(q) is somewhat more pronounced in the STLS theory. 

The ground-state energy Egs defined by Eq. (16) can be expressed 
after some simplification as 
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FIGURE 3 
various r ,  values in comparison with the STLS results at r ,  

The excitation energy E(y) (in units of plasmon frequency w,,(q)) vs q at  
1 and 10. 

In above Eq., Egs is expressed in units of Rydberg ( 1  Ry = e2/2ao). 
Eq. (26) is solved numerically to calculate Egs and the results are given 
in Table I as a function of density alongwith the DMC values and the 
results of STLS and variational calculations [ 151. The agreement of 
our results is reasonable with the DMC predictions. Hong and Choi 
[I31 have argued in 3D that the PV theory as applied to the charged 
Bose system may provide a lower-bound to the ground-state energy. 
Their argument is based upon the fact that the use of mean-field 
approximation for x(q, w), which neglects the frequency-dependence 
of the local-field correction, seems more reliable for the charged Bose 
system than for the electron gas since no low-lying continuum single- 
particle excitations exist in the former system. Further, the local-field 
factor is determined by satisfying the third-frequency moment of 
x(q, w),  which is otherwise not satisfied in the STLS theory. From 
Table I,  our results also seem to yield a lower-bound for the ground- 
state energy, but unless there exists some rigorous proof for it, the 
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100 R. K. MOUDGIL et al. 

TABLE I The ground-state energy ( -EgS in units of Rydberg) as a function of rr 

rs PV DMC STLS Ref. [15]  
1 1.1462 - 1.1121 1.1062 
2 0.6842 0.6740 0.6519 0.6631 
3 0.4998 ~ 

0.4707 - 

5 0.3317 0.3190 0.3083 0.3133 
10 0.1850 0.1748 0.1725 0.1667 

claim for the lower-bound may not be strong. An attempt to provide 
with an upper-bound on the plasmon dispersion and hence, a lower- 
bound on the ground-state energy has recently been made by Chiofalo 
et al. [16] for the 3DCBF. Their method has also been based upon the 
sum-rule arguments, but in a different fashion. 

4. COMPARISON WITH THE 2D ELECTRON FLUID 

So far, we have studied the ground state properties of the 2DCBF. In 
this part of the paper, we discuss briefly the results of the charged Bose 
fluid in comparison with those of a fluid of charged fermions, namely, 
the electrons. As one may expect, the difference in the behavior of two 
fluids will enable one to understand the importance of effects related to 
the statistics. The physical properties we consider for comparison are 
(i) the pair-correlation function, (ii) the static structure factor and (iii) 
the collective density excitation spectrum. We compare only the results 
of the STLS theory. In Figure 4, g(r)  is shown for the electron and 
Bose fluids at densities corresponding to r,= 1 and 5 .  As expected, at 
small separation, g(r)  is larger in the Bose fluid than in the electron 
fluid. The reason underlying our expectation is that the bosons, in 
contrast to the fermions, do not obey Pauli exclusion principle. We 
also notice that (i) the difference in g(r)  for the two fluids is maximum 
at separations corresponding to the limit of small approach and at 
small r, values and (ii) with increasing r,, the two results become very 
close to each other. This implies that the exchange correlation effects 
associated with the electron statistics become less important with 
increasing r, and correlations at large r, are determined essentially by 
Coulomb effects. A similar behavior of correlations is also reflected in 
the static structure factor S(q) and for an illustration, results for S(q) 
are compared in Figure 5 .  
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FIGURE 4 
r ,= 1 and 5. 

The pair-correlation function g ( r )  vs r for bosom and fermions in STLS at 

Finally, we compare the spectrum of elementary excitations in the 
two fluids. For the fermion fluid, there exists two kinds of excitations 
in the system, namely (i) the single particle electron-hole pair 
excitations and (ii) the collective density (plasmon) excitations. The 
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FIGURE 5 The static structure factor S(4) vs 4 for bosons and fermions in STLS at 
r s =  1 and 5. 

plasmon excitation has infinite life-time at q = 0. However, at finite q, 
this has both dispersion and damping and meets the electron-hole pair 
continuum at a critical value of q. The dispersion curves for the 
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plasmon excitation (in units of plasmon frequency w,,(q)) in the case of 
electron fluid are shown in Figure 6 at  different Y , ~ .  In contrast with the 
Bose fluid (Fig. 3), the dispersion curve for the fermion fluid exhibits a 
minimum only when r\. 2 2. This difference in the excitation spectrum 
of two fluids clearly demonstrates the importance of correlation effects 
in the Bose fluid even in the high density limit. Chiofalo, Conti, and 
Tosi [17] have drawn a similar comparison between electron and 
charged Bose fluids in 3D. On cross examining the results, we find that 
the qualitative nature of the difference in the behavior of two fluids 
does remain same while going from 3D to 2D. 

5. CONCLUSIONS 

We have studied the ground state of a two-dimensional charged Bose 
fluid within the self-consistent mean-field approximation. The 

5 I I I I /  

4 

- 3  
ff 

W 

v 

2 

1 

0.0 0.5 1 .o 1.5 2.0 2.5 
q 

FIGURE 6 
frequency w,,(y)) vs q for fermions in STLS at various values of r,,. 

The collective density excitation spectrum E(q) (in units of plasmon 
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104 R. K. MOUDGIL et al. 

correlation effects are incorporated by satisfying in an approximate 
way the third-frequency moment sum rule of the density response 
function. The ground-state properties thus obtained are found to be in 
reasonable agreement with the diffusion Monte Carlo calculation 
provided the density is sufficiently high (r ,  5 2). The reason underlying 
the relatively poor quality of PV results for r, > 2 has its probable 
origin in the neglect of correlational kinetic energy term in the 
expression for the local-field correction factor (Eq. (14)). In view of 
recent DMC calculation of the boson distribution function in 3D, the 
PV approximation (namely, setting ( K E )  = 0) seems reliable only in 
the high density limit. The DMC study reveals that the interacting 
Bose distribution function shows difference from its ideal behavior and 
this effect becomes more pronounced with increasing r,. This, in turn, 
implies a depletion of the condensate phase which we have presently 
assumed. Thus, an increase in r, contributes towards an increase in 
correlational kinetic energy and consequently, the PV approximation 
becomes less valid. The inclusion of effects related with the depletion 
of condensate phase desires further study of the problem. 

We have also presented a comparison between the results of electron 
and charged Bose fluids. The comparison reveals that the statistics 
effects play an important role in determining the properties of the fluid 
at least in the intermediate fluid density range. However, at sufficiently 
large r,, it seems that the correlations are essentially determined by the 
Coulomb correlations. 
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